BaşlayınÜcretsiz Başlayın

Unit testing a data pipeline with fixtures

You've learned in the last video that unit testing can help to instill more trust in your data pipeline, and can even help to catch bugs throughout development. In this exercise, you'll practice writing both fixtures and unit tests, using the pytest library and assert.

The transform function that you'll be building unit tests around is shown below for reference. pandas has been imported as pd, and the pytest() library is loaded and ready for use.

def transform(raw_data):
    raw_data["tax_rate"] = raw_data["total_taxes_paid"] / raw_data["total_taxable_income"]
    raw_data.set_index("industry_name", inplace=True)
    return raw_data

Bu egzersiz

ETL and ELT in Python

kursunun bir parçasıdır
Kursu Görüntüle

Uygulamalı interaktif egzersiz

Bu örnek kodu tamamlayarak bu egzersizi bitirin.

# Define a pytest fixture
@pytest.fixture()
____ ____():
    raw_data = pd.read_csv("raw_tax_data.csv")
    
    # Transform the raw_data, store in clean_data DataFrame, and return the variable
    clean_data = ____
    return ____
Kodu Düzenle ve Çalıştır