Data pipeline architecture patterns
When building data pipelines, it's best to separate the files where functions are being defined from where they are being run.
In this exercise, you'll practice importing components of a pipeline into memory before using these functions to run the pipeline end-to-end. The project takes the following format, where pipeline_utils stores the extract(), transform(), and load() functions that will be used run the pipeline.
> ls
etl_pipeline.py
pipeline_utils.py
Bu egzersiz
ETL and ELT in Python
kursunun bir parçasıdırEgzersiz talimatları
- Import the
extract,transform, andloadfunctions from thepipeline_utilsmodule. - Use the functions imported to run the data pipeline end-to-end.
Uygulamalı interaktif egzersiz
Bu örnek kodu tamamlayarak bu egzersizi bitirin.
# Import the extract, transform, and load functions from pipeline_utils
____
# Run the pipeline end to end by extracting, transforming and loading the data
raw_tax_data = ____("raw_tax_data.csv")
clean_tax_data = ____(raw_tax_data)
____(clean_tax_data, "clean_tax_data.parquet")