Evaluating a model on test and train
The function auc_train_test calculates the AUC of model that is built on a train set and evaluated on a test set:
auc_train, auc_test = auc_train_test(variables, target, train, test)
with variables a list of the names of the variables that is used in the model.
In this exercise, you will apply this function, and check whether the train and test AUC are similar.
Este exercício faz parte do curso
Introduction to Predictive Analytics in Python
Instruções do exercício
- The
basetableis loaded. Partition the basetable such that the train set contains 70% of the data, and make sure that train and test set have equal target incidence. - Calculate the train and test AUC of the model using
"age"and"gender_F"as predictors using theauc_train_testfunction.
Exercício interativo prático
Experimente este exercício completando este código de exemplo.
# Load the partitioning module
from sklearn.model_selection import train_test_split
# Create DataFrames with variables and target
X = basetable.drop('target', 1)
y = basetable["target"]
# Carry out 70-30 partititioning with stratification
X_train, X_test, y_train, y_test = ____(X, y, test_size = ____, stratify = ____)
# Create the final train and test basetables
train = pd.concat([X_train, y_train], axis=1)
test = pd.concat([X_test, y_test], axis=1)
# Apply the auc_train_test function
auc_train, auc_test = ____([____, ____], ["target"], ____, ____)
print(round(auc_train,2))
print(round(auc_test,2))