ComeçarComece de graça

Limited data in your rows

This data sparsity can cause an issue when using techniques like K-nearest neighbors as discussed in the last chapter. KNN needs to find the k most similar users that have rated an item, but if only less than or equal to k users have given an item the rating, all ratings will be the "most similar".

In this exercise, you will count how often each movie in the user_ratings_df DataFrame has been given a rating, and then see how many have only one or two ratings.

Este exercício faz parte do curso

Building Recommendation Engines in Python

Ver curso

Exercício interativo prático

Experimente este exercício completando este código de exemplo.

# Count the occupied cells per column
occupied_count = user_ratings_df.____().____()
print(occupied_count)
Editar e executar o código