Aan de slagGa gratis aan de slag

LOF for the first time

LOF differs from KNN only in the internal algorithm and the lack of the method parameter. Practice detecting outliers with it using contamination filtering on the scaled version of females dataset from previous exercises.

The dataset has been loaded as females_transformed.

Deze oefening maakt deel uit van de cursus

Anomaly Detection in Python

Cursus bekijken

Oefeninstructies

  • Import the LOF estimator from the relevant pyod module.
  • Instantiate an LOF() with 0.3% contamination, 20 neighbors and n_jobs set to -1.
  • Create a boolean index that returns True values when the labels_ returned from lof are equal to 1.
  • Isolate the outliers from females_transformed using is_outlier.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Import LOF from its relevant module
from pyod.____ import ____

# Instantiate LOF and fit to females_transformed
lof = ____
lof.____

# Create a boolean index that checks for outliers
is_outlier = ____

# Isolate the outliers
outliers = ____

print(len(outliers))
Code bewerken en uitvoeren