IniziaInizia gratis

Limited data in your rows

This data sparsity can cause an issue when using techniques like K-nearest neighbors as discussed in the last chapter. KNN needs to find the k most similar users that have rated an item, but if only less than or equal to k users have given an item the rating, all ratings will be the "most similar".

In this exercise, you will count how often each movie in the user_ratings_df DataFrame has been given a rating, and then see how many have only one or two ratings.

Questo esercizio fa parte del corso

Building Recommendation Engines in Python

Visualizza il corso

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

# Count the occupied cells per column
occupied_count = user_ratings_df.____().____()
print(occupied_count)
Modifica ed esegui il codice