IniziaInizia gratis

Making recommendations with SVD

Now that you have the recalculated matrix with all of its gaps filled in, the next step is to use it to generate predictions and recommendations.

Using calc_pred_ratings_df that you generated in the last exercise, with all rows and columns filled, find the movies that User_5 is most likely to enjoy.

Questo esercizio fa parte del corso

Building Recommendation Engines in Python

Visualizza il corso

Istruzioni dell'esercizio

  • Find the highest ranked movies for User_5 by sorting all the reviews generated for User_5 from high to low.

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

# Sort the ratings of User 5 from high to low
user_5_ratings = ____.____[____,:].____(____=____)

print(user_5_ratings)
Modifica ed esegui il codice