IniziaInizia gratis

Non-aggressive methods of dealing with outliers

Trimming a distribution is one of the easiest ways of dealing with an outlier without dropping it. If you know the natural range of values a distribution must take related to your business problem, you can use that knowledge to trim the distribution.

Or, if you have some previous knowledge about which specific values are considered outliers based on domain knowledge or experience, you can also replace them with hard-coded values.

This exercise is a chance to practice these two techniques on the apple stocks dataset.

Questo esercizio fa parte del corso

Anomaly Detection in Python

Visualizza il corso

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

# Find the first percentile of Volume
percentile_first = ____
Modifica ed esegui il codice