Differentiating distance metrics
It is crucial to capture the subtle differences between the manhattan, euclidean and Minkowski distance metrics. Using them correctly ensures the optimal performance of outlier classifiers on various datasets.
Remember from the formula that changing the parameter p will switch between euclidean, manhattan and other degrees of the Minkowski distance.

Questo esercizio fa parte del corso
Anomaly Detection in Python
Esercizio pratico interattivo
Passa dalla teoria alla pratica con uno dei nostri esercizi interattivi
Inizia esercizio