IniziaInizia gratis

Tuning multiple hyperparameters

In this exercise, you will practice tuning multiple hyperparameters simultaneously. This is a valuable topic to learn, as hyperparameters of an algorithm usually affect each other's values. Therefore, tuning them individually is not usually the recommended course of action.

You will tune the max_features and max_samples parameters of IForest using a sample of the Big Mart sales data.

IForest and airbnb_df are already loaded for you. The product function from itertools is also available.

Questo esercizio fa parte del corso

Anomaly Detection in Python

Visualizza il corso

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

# Create two lists for max_features and max_samples
max_features = ____
max_samples = ____
scores = dict()
Modifica ed esegui il codice