MulaiMulai sekarang secara gratis

Manual regularization with Lasso

The attrition dataset has 30 variables. Your Human Resources department asks you to build a model that is easy to interpret and maintain. They specifically want to reduce the number of features so that your model is as interpretable as possible.

In this exercise, you'll use Lasso to reduce the number of variables in your model automatically. In this first attempt, you will manually input a penalty and observe the model's behavior.

trainand test data, and a basic recipe are already loaded for you.

Latihan ini adalah bagian dari kursus

Feature Engineering in R

Lihat Kursus

Petunjuk latihan

  • Set your logistic regression model to use the glmnet engine.
  • Set arguments to run Lasso with a penalty of 0.06.

Latihan interaktif praktis

Cobalah latihan ini dengan menyelesaikan kode contoh berikut.

model_lasso_manual <- logistic_reg() %>%

# Set the glmnet engine for your logistic regression model
  ___(___) %>%

# Set arguments to run Lasso with a penalty of 0.06
  set_args(mixture = ___, ___ = ___)

workflow_lasso_manual <- workflow() %>%
  add_model(model_lasso_manual) %>%
  add_recipe(recipe)

fit_lasso_manual <- workflow_lasso_manual %>% 
  fit(train)

tidy(fit_lasso_manual)
Edit dan Jalankan Kode