MulaiMulai sekarang secara gratis

Imputing missing values and creating dummy variables

After detecting missing values in the attrition dataset and determining that they are missing completely at random (MCAR), you decide to use K Nearest Neighbors (KNN) imputation. While configuring your feature engineering recipe, you decide to create dummy variables for all your nominal variables and update the role of the ...1 variable to "ID" so you can keep it in the dataset for reference, without affecting your model.

Latihan ini adalah bagian dari kursus

Feature Engineering in R

Lihat Kursus

Petunjuk latihan

  • Update the role of ...1 to "ID".
  • Impute values to all predictors where data are missing.
  • Create dummy variables for all nominal predictors.

Latihan interaktif praktis

Cobalah latihan ini dengan menyelesaikan kode contoh berikut.

lr_model <- logistic_reg()

lr_recipe <- 
  recipe(Attrition ~., data = train) %>%

# Update the role of "...1" to "ID"
  ___(...1, new_role = "ID" ) %>%

# Impute values to all predictors where data are missing
  step_impute_knn(___) %>%

# Create dummy variables for all nominal predictors
  ___(all_nominal_predictors())

lr_recipe
Edit dan Jalankan Kode