MulaiMulai sekarang secara gratis

Which is the main predictor?

You've got a remarkable prediction, but what were the main predictors? How can you make sense of the model so that you can go beyond the raw results? Machine learning models are often criticized for their lack of interpretability. However, variable importance rankings shed some light on the relevance of your chosen features with the outcome. So let's investigate variable importance and go from there.

Latihan ini adalah bagian dari kursus

Feature Engineering in R

Lihat Kursus

Petunjuk latihan

  • Create a variable importance chart.

Latihan interaktif praktis

Cobalah latihan ini dengan menyelesaikan kode contoh berikut.

lr_fit <- lr_workflow %>%
  fit(test)

lr_aug <- lr_fit %>%
  augment(test)

lr_aug %>% class_evaluate(truth = Attrition,
                          estimate = .pred_class,
                          .pred_No)

# Create a variable importance chart
lr_fit %>%
  extract_fit_parsnip() %>%
  ___(aesthetics = list(fill = "steelblue"), num_features = 5)
Edit dan Jalankan Kode