Visualize monthly mean, median and standard deviation of S&P500 returns
You have also learned how to calculate several aggregate statistics from upsampled data.
Let's use this to explore how the monthly mean, median and standard deviation of daily S&P500 returns have trended over the last 10 years.
Cet exercice fait partie du cours
Manipulating Time Series Data in Python
Instructions
As usual, we have imported pandas as pd and matplotlib.pyplot as plt for you.
- Use
pd.read_csv()to import'sp500.csv', set aDateTimeIndexbased on the'date'column usingparse_datesandindex_col, assign the results tosp500, and inspect using.info(). - Convert
sp500to apd.Series()using.squeeze(), and apply.pct_change()to calculatedaily_returns. .resample()daily_returnsto month-end frequency (alias:'M'), and apply.agg()to calculate'mean','median', and'std'. Assign the result tostats..plot()stats.
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
# Import data here
sp500 = ____
# Calculate daily returns here
daily_returns = ____
# Resample and calculate statistics
stats = ____
# Plot stats here