CommencerCommencer gratuitement

Testing a claim

In the last exercise, you got a sense of what a single simulated p-hat might be if in fact the true proportion of believers was 0.75. That p-hat was likely different from the p-hat in gss2016, but was that a fluke or is there a systematic inconsistency between that claim and the data in the GSS?

In this exercise, you'll settle this question.

Cet exercice fait partie du cours

Inference for Categorical Data in R

Afficher le cours

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

# Generate null distribution
___ <- gss2016 %>%
  specify(response = postlife, success = "YES") %>%
  hypothesize(null = "point", p = 0.75) %>%
  generate(reps = ___, type = "simulate") %>%
  # Calculate proportions
  ___(stat = ___)
Modifier et exécuter le code