ComenzarEmpieza gratis

Build final classification model

Comparing the recall performance between the logistic regression model (0.4) and the best performing random forest model (0.2), you've learned that the model with the best performance is the logistic regression model. In this exercise, you will build the logistic regression model using all of the train data and you will prepare the necessary vectors for evaluating this model's test performance.

Este ejercicio forma parte del curso

Machine Learning in the Tidyverse

Ver curso

Instrucciones del ejercicio

  • Build a logistic regression model predicting Attrition using all available features in the training_data.
  • Prepare the binary vector of actual test values, test_actual.
  • Prepare the binary vector of predicted values where a probability greater than 0.5 indicates TRUE and store this as test_predicted.

Ejercicio interactivo práctico

Prueba este ejercicio y completa el código de muestra.

# Build the logistic regression model using all training data
best_model <- glm(formula = ___, 
                  data = ___, family = "binomial")


# Prepare binary vector of actual Attrition values for testing_data
test_actual <- testing_data$___ == "___"

# Prepare binary vector of predicted Attrition values for testing_data
test_predicted <- predict(___, ___, type = "response") > ___
Editar y ejecutar código