ComenzarEmpieza gratis

PCA in a model pipeline

We just saw that legendary Pokemon tend to have higher stats overall. Let's see if we can add a classifier to our pipeline that detects legendary versus non-legendary Pokemon based on the principal components.

The data has been pre-loaded for you and split into training and tests datasets: X_train, X_test, y_train, y_test.

Same goes for all relevant packages and classes(Pipeline(), StandardScaler(), PCA(), RandomForestClassifier()).

Este ejercicio forma parte del curso

Dimensionality Reduction in Python

Ver curso

Ejercicio interactivo práctico

Prueba este ejercicio y completa el código de muestra.

# Build the pipeline
pipe = Pipeline([
        ('scaler', ____),
        ('reducer', ____),
        ('classifier', ____)])
Editar y ejecutar código