ComenzarEmpieza gratis

PCA for feature exploration

You'll use the PCA pipeline you've built in the previous exercise to visually explore how some categorical features relate to the variance in poke_df. These categorical features (Type & Legendary) can be found in a separate DataFrame poke_cat_df.

All relevant packages and classes have been pre-loaded for you (Pipeline(), StandardScaler(), PCA())

Este ejercicio forma parte del curso

Dimensionality Reduction in Python

Ver curso

Ejercicio interactivo práctico

Prueba este ejercicio y completa el código de muestra.

# Build the pipeline
pipe = Pipeline([('scaler', StandardScaler()),
                 ('reducer', PCA(n_components=2))])

# Fit the pipeline to poke_df and transform the data
pc = ____

print(pc)
Editar y ejecutar código