Analyzing custom segments
As a final step, you will analyze average values of Recency
, Frequency
and MonetaryValue
for the custom segments you've created.
We have loaded the datamart
dataset with the segment values you have calculated in the previous exercise. Feel free to explore it in the console. pandas
library is also loaded as pd
.
Este ejercicio forma parte del curso
Customer Segmentation in Python
Instrucciones del ejercicio
- Calculate the averages for
Recency
,Frequency
andMonetaryValue
for eachRFM_Level
segment. - As the last column, return the size of each segment passing
count
to theMonetaryValue
column next to themean
. - Print the aggregated dataset.
Ejercicio interactivo práctico
Prueba este ejercicio y completa el código de muestra.
# Calculate average values for each RFM_Level, and return a size of each segment
rfm_level_agg = datamart.____('____').____({
'____': '____',
'____': '____',
# Return the size of each segment
'____': ['____', '____']
}).round(1)
# Print the aggregated dataset
print(____)