ComenzarEmpieza gratis

Calculate average price

You will now calculate the average price metric and analyze if there are any differences in shopping patterns across time and across cohorts.

The online dataset has been loaded to you with monthly cohorts and cohort index assigned from this lesson. Feel free to print it to the Console.

Este ejercicio forma parte del curso

Customer Segmentation in Python

Ver curso

Instrucciones del ejercicio

  • Create a groupby object and pass the monthly cohort and cohort index as a list.
  • Select the unit price column, calculate the average, and store it to cohort_data.
  • Reset the index of cohort_data DataFrame.
  • Create a pivot with monthly cohort in the index, cohort index in the columns and the unit price in the values, and print the result.

Ejercicio interactivo práctico

Prueba este ejercicio y completa el código de muestra.

# Create a groupby object and pass the monthly cohort and cohort index as a list
grouping = online.groupby([____, ____]) 

# Calculate the average of the unit price column
cohort_data = grouping[____].____()

# Reset the index of cohort_data
cohort_data = cohort_data.____()

# Create a pivot 
average_price = cohort_data.____(index=____, columns=____, values=____)
print(average_price.round(1))
Editar y ejecutar código