ComenzarEmpieza gratis

Model training

Next, you will estimate a logistic response model on train.data. Therefore, you use the predictor variables that remained after model selection to explain the purchase probabilities for HOPPINESS. You investigate the train.model and compare the results to the previously fitted extended.model by using the function margins().

Este ejercicio forma parte del curso

Building Response Models in R

Ver curso

Instrucciones del ejercicio

  • Estimate a logistic response model on train.data. Explain HOPPINESS by price.ratio, FEAT.HOP, and FEATDISPL.HOP. Use the function glm() with the family argument binomial and assign the result to an object named train.model.
  • Investigate the train.model object by using the function margins().
  • Investigate the extended.model object by using the function margins().

Ejercicio interactivo práctico

Prueba este ejercicio completando el código de muestra.

# Fit the logistic response model to train.data
___ <- glm(___, family = binomial, data = ___)

# Investigate the train.model
___

# Investigate the extended.model
___
Editar y ejecutar código