Performing PCA
The next step in your analysis is to perform PCA on wisc.data.
You saw in the last chapter that it's important to check if the data need to be scaled before performing PCA. Recall two common reasons for scaling data:
- The input variables use different units of measurement.
- The input variables have significantly different variances.
Diese Übung ist Teil des Kurses
Unsupervised Learning in R
Anleitung zur Übung
The variables you created before, wisc.data and diagnosis, are still available in your workspace.
- Check the mean and standard deviation of the features of the data to determine if the data should be scaled. Use the
colMeans()andapply()functions like you've done before. - Execute PCA on the
wisc.data, scaling if appropriate, and assign the model towisc.pr. - Inspect a summary of the results with the
summary()function.
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
# Check column means and standard deviations
# Execute PCA, scaling if appropriate: wisc.pr
# Look at summary of results