Diese Übung ist Teil des Kurses
Meet the incredible NumPy array! Learn how to create and change array shapes to suit your needs. Finally, discover NumPy's many data types and how they contribute to speedy array operations.
Sharpen your NumPy data wrangling skills by slicing, filtering, and sorting New York City’s tree census data. Create new arrays by pulling data based on conditional statements, and add and remove data along any dimension to suit your purpose. Along the way, you’ll learn the shape and dimension compatibility principles to prepare for super-fast array math.
Leverage NumPy’s speedy vectorized operations to gather summary insights on sales data for American liquor stores, restaurants, and department stores. Vectorize Python functions for use in your NumPy code. Finally, use broadcasting logic to perform mathematical operations between arrays of different sizes.
NumPy meets the art world in this final chapter as we use image data from a Monet masterpiece to explore how you can use to augment image data. You’ll use flipping and transposing functionality to quickly transform our masterpiece. Next, you’ll pull the Monet array apart, make changes, and reconstruct it using array stacking to see the results.
Aktuelle Übung