BaşlayınÜcretsiz Başlayın

Bootstrapping a confidence interval

A useful tool for assessing the variability of some data is the bootstrap. In this exercise, you'll write your own bootstrapping function that can be used to return a bootstrapped confidence interval.

This function takes three parameters: a 2-D array of numbers (data), a list of percentiles to calculate (percentiles), and the number of boostrap iterations to use (n_boots). It uses the resample function to generate a bootstrap sample, and then repeats this many times to calculate the confidence interval.

Bu egzersiz

Machine Learning for Time Series Data in Python

kursunun bir parçasıdır
Kursu Görüntüle

Egzersiz talimatları

  • The function should loop over the number of bootstraps (given by the parameter n_boots) and:
    • Take a random sample of the data, with replacement, and calculate the mean of this random sample
    • Compute the percentiles of bootstrap_means and return it

Uygulamalı interaktif egzersiz

Bu örnek kodu tamamlayarak bu egzersizi bitirin.

from sklearn.utils import ____

def bootstrap_interval(data, percentiles=(2.5, 97.5), n_boots=100):
    """Bootstrap a confidence interval for the mean of columns of a 2-D dataset."""
    # Create our empty array to fill the results
    bootstrap_means = np.zeros([n_boots, data.shape[-1]])
    for ii in range(____):
        # Generate random indices for our data *with* replacement, then take the sample mean
        random_sample = ____
        bootstrap_means[ii] = random_sample.mean(axis=0)
        
    # Compute the percentiles of choice for the bootstrapped means
    percentiles = ____(bootstrap_means, percentiles, axis=0)
    return percentiles
Kodu Düzenle ve Çalıştır