BaşlayınÜcretsiz Başlayın

Isolation Forest on time series

If you want to use all the information available, you can fit a multivariate outlier detector to the entire dataset. The multivariate approach also enables you to extract more features from time series to enhance model performance.

Practice creating new features from a DatetimeIndex and fitting an outlier detector on them using the apple dataset, which has already been loaded with a DatetimeIndex.

Also, recall the random_state parameter, which can be used to generate reproducible results.

Bu egzersiz

Anomaly Detection in Python

kursunun bir parçasıdır
Kursu Görüntüle

Uygulamalı interaktif egzersiz

Bu örnek kodu tamamlayarak bu egzersizi bitirin.

# Create three new features from the DatetimeIndex
apple['day_of_week'] = ____
apple['month'] = ____
apple['day_of_month'] = _____
Kodu Düzenle ve Çalıştır