Scaling II
You'll now apply a scaler to the dataset, which is available for you as environment.
Remember that Scaling helps the algorithm converge faster, and avoids having one dominant feature heavily influence the outcomes.
Bu egzersiz
Analyzing IoT Data in Python
kursunun bir parçasıdırEgzersiz talimatları
- Initialize a
StandardScalerand store it assc. - Fit the scaler to
environment. - Scale
environmentand store the result asenviron_scaled. - Convert the scaled data back to a DataFrame, using the same columns and index than the original DataFrame.
Uygulamalı interaktif egzersiz
Bu örnek kodu tamamlayarak bu egzersizi bitirin.
# Initialize StandardScaler
sc = ____()
# Fit the scaler
sc.fit(____)
# Transform the data
environ_scaled = ____.____(____)
# Convert scaled data to DataFrame
environ_scaled = pd.DataFrame(____,
columns=____,
index=____)
print(environ_scaled.head())
plot_unscaled_scaled(environment, environ_scaled)