BaşlayınÜcretsiz Başlayın

Store Pipeline

You'll now create the Pipeline again, but directly, skipping the step of initializing the StandardScaler and LogisticRegression as a variable. Instead, you will do the initialization as part of the Pipeline creation.

You'll then store the model for further use.

The data is available as X_train, with the labels as y_train.

StandardScaler, LogisticRegression and Pipeline have been imported for you.

Bu egzersiz

Analyzing IoT Data in Python

kursunun bir parçasıdır
Kursu Görüntüle

Uygulamalı interaktif egzersiz

Bu örnek kodu tamamlayarak bu egzersizi bitirin.

# Create Pipeline
pl = Pipeline([
        ("scale", ____),
        ("logreg", ____)
    ])

# Fit the pipeline
____.____(____, ____)
Kodu Düzenle ve Çalıştır