ComeçarComece de graça

Simulating the dice game

We now know how to implement the first three steps of a simulation. Now let's consider the next step - repeated random sampling.

Simulating an outcome once doesn't tell us much about how often we can expect to see that outcome. In the case of the dice game from the previous exercise, it's great that we won once. But suppose we want to see how many times we can expect to win if we played this game multiple times, we need to repeat the random sampling process many times. Repeating the process of random sampling is helpful to understand and visualize inherent uncertainty and deciding next steps.

Following this exercise, you will be familiar with implementing the fourth step of running a simulation - sampling repeatedly and generating outcomes.

Este exercício faz parte do curso

Statistical Simulation in Python

Ver curso

Instruções do exercício

  • Set sims to 100 repetitions and initialize wins to 0.
  • Write a for loop to repeat throwing the dice.
  • Set outcomes to the outcome of throwing two dice.
  • If the two dice show the same number, increment wins by 1.

Exercício interativo prático

Experimente este exercício completando este código de exemplo.

# Initialize model parameters & simulate dice throw
die, probabilities, num_dice = [1,2,3,4,5,6], [1/6, 1/6, 1/6, 1/6, 1/6, 1/6], 2
sims, wins = ____, ____

for i in range(sims):
    outcomes = ____ 
    # Increment `wins` by 1 if the dice show same number
    if ____: 
        wins = wins + 1 

print("In {} games, you win {} times".format(sims, wins))
Editar e executar o código