ComeçarComece de graça

Multivariate GAMs of auto performance

GAMs can accept multiple variables of different types. In the following exercises, you'll work with the mpg dataset available in the gamair package to practice fitting models of different forms.

Este exercício faz parte do curso

Nonlinear Modeling with Generalized Additive Models (GAMs) in R

Ver curso

Instruções do exercício

  • Use the head() and str() functions to examine the mpg data set.
  • Fit a GAM to these data to predict city.mpg as the sum of smooth functions of weight, length, and price.
  • Use the plot() function provided to visualize the model.

Exercício interativo prático

Experimente este exercício completando este código de exemplo.

library(mgcv)

# Examine the data
___
___

# Fit the model
mod_city <- gam(city.mpg ~ ___, 
                data = mpg, method = "REML")

# Plot the model
plot(mod_city, pages = 1)
Editar e executar o código