ComeçarComece de graça

Fitting and testing the model

In the previous exercise, you split the dataset into X_train, X_test, y_train, and y_test. These datasets have been pre-loaded for you. You'll now create a support vector machine classifier model (SVC()) and fit that to the training data. You'll then calculate the accuracy on both the test and training set to detect overfitting.

Este exercício faz parte do curso

Dimensionality Reduction in Python

Ver curso

Instruções do exercício

  • Import SVC from sklearn.svm and accuracy_score from sklearn.metrics
  • Create an instance of the Support Vector Classification class (SVC()).
  • Fit the model to the training data.
  • Calculate accuracy scores on both train and test data.

Exercício interativo prático

Experimente este exercício completando este código de exemplo.

# Import SVC from sklearn.svm and accuracy_score from sklearn.metrics
from ____ import ____
from ____ import ____

# Create an instance of the Support Vector Classification class
svc = ____

# Fit the model to the training data
svc.fit(____, ____)

# Calculate accuracy scores on both train and test data
accuracy_train = accuracy_score(____, svc.predict(____))
accuracy_test = accuracy_score(____, svc.predict(____))

print(f"{accuracy_test:.1%} accuracy on test set vs. {accuracy_train:.1%} on training set")
Editar e executar o código