ComeçarComece de graça

PCA in a model pipeline

We just saw that legendary Pokemon tend to have higher stats overall. Let's see if we can add a classifier to our pipeline that detects legendary versus non-legendary Pokemon based on the principal components.

The data has been pre-loaded for you and split into training and tests datasets: X_train, X_test, y_train, y_test.

Same goes for all relevant packages and classes(Pipeline(), StandardScaler(), PCA(), RandomForestClassifier()).

Este exercício faz parte do curso

Dimensionality Reduction in Python

Ver curso

Exercício interativo prático

Experimente este exercício completando este código de exemplo.

# Build the pipeline
pipe = Pipeline([
        ('scaler', ____),
        ('reducer', ____),
        ('classifier', ____)])
Editar e executar o código