Explore variation by missingness: box plots
Previous exercises use nabular data along with density plots to explore the variation in a variable by the missingness of another.
We are going to use the oceanbuoys dataset from naniar, using box plots instead of facets or others to explore different layers of missingness.
Este exercício faz parte do curso
Dealing With Missing Data in R
Instruções do exercício
- Explore the distribution of wind east west (
wind_ew) for the missingness of air temperature usinggeom_boxplot() - Build upon this visualization by faceting by the missingness of humidity (
humidity_NA).
Exercício interativo prático
Experimente este exercício completando este código de exemplo.
# Explore the distribution of wind east west (`wind_ew`) for
# the missingness of air temperature using `geom_boxplot()`
oceanbuoys %>%
bind_shadow() %>%
ggplot(aes(x = air_temp_c___,
y = ____)) +
geom_____()
# Build upon this visualization by faceting by the missingness of humidity (`humidity_NA`).
oceanbuoys %>%
___() %>%
ggplot(aes(x = ___,
y = ___)) +
geom_____() +
facet_wrap(~___)