ComeçarComece de graça

Calculate RFM Score

Great work, you will now finish the job by assigning customers to three groups based on the MonetaryValue percentiles and then calculate an RFM_Score which is a sum of the R, F, and M values.

The datamart has been loaded with the R and F values you have created in the previous exercise.

Este exercício faz parte do curso

Customer Segmentation in Python

Ver curso

Instruções do exercício

  • Create labels for MonetaryValue with an increasing range of 1 through 3.
  • Assign these labels to three equal percentile groups based on MonetaryValue.
  • Create new column M based on the MonetaryValue percentile group.
  • Calculate RFM_Score based on the sum of R, F, and M column values.

Exercício interativo prático

Experimente este exercício completando este código de exemplo.

# Create labels for MonetaryValue
m_labels = range(1, ____)

# Assign these labels to three equal percentile groups 
m_groups = pd.qcut(datamart['MonetaryValue'], q=____, labels=____)

# Create new column M
datamart = datamart.assign(____=____)

# Calculate RFM_Score
datamart['RFM_Score'] = datamart[['R','F','M']].____(axis=____)
print(datamart['____'].head())
Editar e executar o código