ComeçarComece de graça

Run k-means

You will now build a 3 clusters with k-means clustering. We have loaded the pre-processed RFM dataset as datamart_normalized. We have also loaded the pandas library as pd.

You can explore the dataset in the console to get familiar with it.

Este exercício faz parte do curso

Customer Segmentation in Python

Ver curso

Instruções do exercício

  • Import KMeans from the scikit-learn library.
  • Initialize KMeans with 3 clusters and random state 1.
  • Fit k-means clustering on the normalized data set.
  • Extract cluster labels and store them as cluster_labels.

Exercício interativo prático

Experimente este exercício completando este código de exemplo.

# Import KMeans 
from ____.____ import ____

# Initialize KMeans
kmeans = ____(____=3, ____=1) 

# Fit k-means clustering on the normalized data set
____.____(datamart_normalized)

# Extract cluster labels
cluster_labels = ____.____
Editar e executar o código