Generating and plotting geometric distributions
In sports it is common for players to make multiple attempts to score points for themselves or their teams. Each single attempt can have two possible outcomes, scoring or not scoring. Those situations can be modeled with geometric distributions. With scipy.stats you can generate samples using the rvs() function for each distribution.
Consider the previous example of a basketball player who scores free throws with a probability of 0.3. Generate a sample, and plot it.
numpy has been imported for you with the standard alias np.
Deze oefening maakt deel uit van de cursus
Foundations of Probability in Python
Oefeninstructies
- Import
geomfromscipy.stats,matplotlib.pyplotasplt, andseabornassns. - Generate a sample with
size=10000from a geometric distribution with a probability of success of 0.3. - Plot the sample generated.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# Import geom, matplotlib.pyplot, and seaborn
from ____
import ____
import ____
# Create the sample
sample = ____.____(p=____, size=10000, random_state=13)
# Plot the sample
sns.____(sample, bins = np.linspace(0,20,21), kde=False)
plt.show()