Ensemble models for extra votes
The LassoCV() model selected 22 out of 32 features. Not bad, but not a spectacular dimensionality reduction either. Let's use two more models to select the 10 features they consider most important using the Recursive Feature Eliminator (RFE).
The standardized training and test data has been pre-loaded for you as X_train, X_test, y_train, and y_test.
Deze oefening maakt deel uit van de cursus
Dimensionality Reduction in Python
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
from sklearn.feature_selection import RFE
from sklearn.ensemble import GradientBoostingRegressor
# Select 10 features with RFE on a GradientBoostingRegressor, drop 3 features on each step
rfe_gb = RFE(estimator=____,
n_features_to_select=____, step=____, verbose=1)
rfe_gb.fit(X_train, y_train)