IniziaInizia gratis

Analyzing custom segments

As a final step, you will analyze average values of Recency, Frequency and MonetaryValue for the custom segments you've created.

We have loaded the datamart dataset with the segment values you have calculated in the previous exercise. Feel free to explore it in the console. pandas library is also loaded as pd.

Questo esercizio fa parte del corso

Customer Segmentation in Python

Visualizza il corso

Istruzioni dell'esercizio

  • Calculate the averages for Recency, Frequency and MonetaryValue for each RFM_Level segment.
  • As the last column, return the size of each segment passing count to the MonetaryValue column next to the mean.
  • Print the aggregated dataset.

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

# Calculate average values for each RFM_Level, and return a size of each segment 
rfm_level_agg = datamart.____('____').____({
    '____': '____',
    '____': '____',
  
  	# Return the size of each segment
    '____': ['____', '____']
}).round(1)

# Print the aggregated dataset
print(____)
Modifica ed esegui il codice