MulaiMulai sekarang secara gratis

Predicting using a classification model

Now that you have fit your classifier, let's use it to predict the type of flower (or class) for some newly-collected flowers.

Information about petal width and length for several new flowers is stored in the variable targets. Using the classifier you fit, you'll predict the type of each flower.

Latihan ini adalah bagian dari kursus

Machine Learning for Time Series Data in Python

Lihat Kursus

Petunjuk latihan

  • Predict the flower type using the array X_predict.
  • Run the given code to visualize the predictions.

Latihan interaktif praktis

Cobalah latihan ini dengan menyelesaikan kode contoh berikut.

# Create input array
X_predict = targets[['petal length (cm)', 'petal width (cm)']]

# Predict with the model
predictions = ____
print(predictions)

# Visualize predictions and actual values
plt.scatter(X_predict['petal length (cm)'], X_predict['petal width (cm)'],
            c=predictions, cmap=plt.cm.coolwarm)
plt.title("Predicted class values")
plt.show()
Edit dan Jalankan Kode