MulaiMulai sekarang secara gratis

Visualize backward fill imputation

To understand the quality of imputations, it is important to analyze how the imputations vary with respect to the actual dataset. The quickest way to do so is by visualizing the imputations.

In the previous exercise, you visualized the time-series forward filled imputation of airquality DataFrame. In this exercise, you will visualize the backward filled imputation of airquality DataFrame.

Latihan ini adalah bagian dari kursus

Dealing with Missing Data in Python

Lihat Kursus

Latihan interaktif praktis

Cobalah latihan ini dengan menyelesaikan kode contoh berikut.

# Impute airquality DataFrame with bfill method
bfill_imputed = airquality.___(___='___')
Edit dan Jalankan Kode