CommencerCommencer gratuitement

Random forest model

In this exercise, you will use the randomForest() function in the randomForest package to build a random forest model for predicting churn of the customers in the training data set, training_set. The target variable is called Future. You will also inspect and visualize the importance of the variables in the model.

Cet exercice fait partie du cours

Predictive Analytics using Networked Data in R

Afficher le cours

Instructions

  • Load the randomForest package.
  • Use the set.seed() function with the seed 863.
  • Build a random forest using the function randomForest() and all the variables in training_set. The response variable Future needs to be a factor, so utilize the as.factor() function.
  • Plot the variable importance of the random forest model using varImpPlot().

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

# Load package
___(randomForest)

# Set seed
set.seed(___)

# Build model
rfModel <- ___(as.factor(___)~. ,data=training_set)

# Plot variable importance
varImpPlot(___)
Modifier et exécuter le code