Compute benchmark returns
In this exercise, we will create a benchmark to evaluate the performance of the optimization models in later exercises. An equal weight benchmark is a simple weighting scheme to construct the benchmark portfolio. The intuition of an equal weight approach is that there is no preference for any given asset. We are setting this up to answer the question, "Can optimization outperform a simple weighting scheme to construct a portfolio?"
Cet exercice fait partie du cours
Intermediate Portfolio Analysis in R
Instructions
- Load the
PortfolioAnalytics
package. - Load the edhec dataset.
- Assign the edhec dataset to a variable named
asset_returns
. - Create a vector of equal weights assigned to a variable named
equal_weights
. - Compute an equal weight benchmark, rebalanced quarterly, of
asset_returns
. - Plot the benchmark returns.
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
# Load the package
# Load the data
# Assign the data to a variable
# Create a vector of equal weights
equal_weights <- rep(1 / ncol(___), ncol(___))
# Compute the benchmark returns
r_benchmark <- Return.portfolio(R = ___, weights = ___, rebalance_on = ___)
colnames(r_benchmark) <- "benchmark"
# Plot the benchmark returns