CommencerCommencer gratuitement

Transportation model: defining the generator

Well done; you have defined your model inputs and outputs and the model processes you characterized using Python methods. Now, it's time to put a generator together that will sequence all your model processes.

Cet exercice fait partie du cours

Discrete Event Simulation in Python

Afficher le cours

Instructions

  • Call the function road_travel() created before, which calculates the road travel time, and clock in the time it takes to complete it.
  • Call the function wait_traffic_light() created before, which calculates the waiting time at traffic lights, and clock in the time it takes to complete it.

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

def all_processes(env, inputs):
    road_stretch, distance_total, traffic_light = 0, 0, 0
    while True:

        road_stretch += 1
        
        # Call function calculates road travel time
        distance, distance_total = ____(inputs, distance_total)
        yield env.____(distance/inputs['Speed_limit_ms'])
        print(f"> Road Stretch #{road_stretch} \nLength = {distance} m , Cumulative distance travelled = {distance_total} m , Total time elapsed = {env.now} sec")

        traffic_light += 1
        
        # Call function that calculates waiting time at a traffic light
        waitTime_traffic_light_sec = ____(inputs, distance_total)
        yield env.____(waitTime_traffic_light_sec)
        print(f"> Traffic Light #{traffic_light} \nWait time = {waitTime_traffic_light_sec} sec, Time lapsed = {env.now} sec")
Modifier et exécuter le code