CommencerCommencer gratuitement

Evaluating the different parameters in the model

We are imputing our data for a reason - we want to analyze the data!

In this example, we are interested in predicting sea temperature, so we will build a linear model predicting sea temperature.

We will fit this model to each of the datasets we created and then explore the coefficients in the data.

The objects from the previous lesson (ocean_cc, ocean_imp_lm_wind, ocean_imp_lm_all, and bound_models) are loaded into the workspace.

Cet exercice fait partie du cours

Dealing With Missing Data in R

Afficher le cours

Instructions

  • Create the model summary for each dataset with columns for residuals using residuals, predict, and tidy.
  • Explore the coefficients in the model and put the model with the highest estimate for air_temp_c in the object best_model

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

# Create the model summary for each dataset
model_summary <- bound_models %>% 
  group_by(imp_model) %>%
  nest() %>%
  mutate(mod = map(data, ~lm(sea_temp_c ~ air_temp_c + humidity + year, data = .)),
         res = map(mod, ___),
         pred = map(mod, ___),
         tidy = map(mod, ___))

# Explore the coefficients in the model
model_summary %>% 
	select(___,___) %>% 
	unnest()
best_model <- "___"
Modifier et exécuter le code