The Normal CDF
Now that you have a feel for how the Normal PDF looks, let's consider its CDF. Using the samples you generated in the last exercise (in your namespace as samples_std1
, samples_std3
, and samples_std10
), generate and plot the CDFs.
Este ejercicio forma parte del curso
Statistical Thinking in Python (Part 1)
Instrucciones del ejercicio
- Use your
ecdf()
function to generate x and y values for CDFs:x_std1, y_std1
,x_std3, y_std3
andx_std10, y_std10
, respectively. - Plot all three CDFs as dots (do not forget the
marker
andlinestyle
keyword arguments!). - Hit submit to make a legend, showing which standard deviations you used, and to show your plot. There is no need to label the axes because we have not defined what is being described by the Normal distribution; we are just looking at shapes of CDFs.
Ejercicio interactivo práctico
Prueba este ejercicio y completa el código de muestra.
# Generate CDFs
# Plot CDFs
# Make a legend and show the plot
_ = plt.legend(('std = 1', 'std = 3', 'std = 10'), loc='lower right')
plt.show()