ComenzarEmpieza gratis

Building an ETL Pipeline

Ready to ratchet up the fun? In this exercise, you'll be responsible for building the rest of the load() function before running each step in the ETL process. The extract() and transform() functions have been defined for you. Good luck!

Este ejercicio forma parte del curso

Introducción a las canalizaciones de datos

Ver curso

Instrucciones de ejercicio

  • Complete the load() function by writing the transformed_data DataFrame to a .csv file, using file_name.
  • Use the transform() function to clean the extracted_data DataFrame.
  • Load transformed_data to the transformed_data.csv file using the load() function.

Ejercicio interactivo práctico

Pruebe este ejercicio completando este código de muestra.

def load(data_frame, file_name):
  # Write cleaned_data to a CSV using file_name
  data_frame.____(____)
  print(f"Successfully loaded data to {file_name}")

extracted_data = extract(file_name="raw_data.csv")

# Transform extracted_data using transform() function
transformed_data = ____(data_frame=____)

# Load transformed_data to the file transformed_data.csv
____(data_frame=____, file_name="transformed_data.csv")
Editar y ejecutar código