ComenzarEmpieza gratis

Identifying potential confounds

Once measures have been extracted, double-check for dependencies within your data. This is especially true if any image parameters (sampling rate, field of view) might differ between subjects, or you pull multiple measures from a single image.

For the final exercises, we have combined demographic and brain volume measures into a pandas DataFrame (df).

First, you will explore the table and available variables. Then, you will check for correlations between the data.

Este ejercicio forma parte del curso

Biomedical Image Analysis in Python

Ver curso

Ejercicio interactivo práctico

Prueba este ejercicio y completa el código de muestra.

# Print random sample of rows
print(____)
Editar y ejecutar código