Mehrere Parameter zum Bericht hinzufügen
Zuvor hast du einen Parameter für country hinzugefügt, um neue Berichte zu erstellen, die Informationen über die Investitionsprojekte für jedes Land in den investment_services_projects-Daten zusammenfassen. Jetzt fügst du Parameter für das Geschäftsjahr hinzu und passt den bestehenden Code an, sodass du neue Berichte über die Investitionsprojekte für jedes Land und Geschäftsjahr aus den investment_services_projects-Daten erstellen kannst.
Diese Übung ist Teil des Kurses
Berichten mit R Markdown
Anleitung zur Übung
- Füge einen Parameter
fyfür das Geschäftsjahr hinzu und gib2018als Geschäftsjahr an. - Füge Parameter für die Daten
year_startundyear_endhinzu und verwende2017-07-01füryear_startund2018-06-30füryear_enddes Geschäftsjahres 2018. - Ersetze die Datumsverweise im
filter()in den Zeilen64und65durch Verweise auf die Parameteryear_startundyear_end. - Benenne im Code-Chunk
country-investment-projects-2018den Code-Chunk incountry-annual-investment-projectsum und benenne den Objektnamen und die Objektverweise im Text incountry_annual_investment_projectsum.
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
{"investment_report.Rmd":"---\ntitle: \"Investment Report for Projects in `r params$country`\"\noutput: \n html_document:\n toc: true\n toc_float: true\ndate: \"`r format(Sys.time(), '%d %B %Y')`\"\nparams:\n country: Brazil\n---\n\n```{r setup, include = FALSE}\nknitr::opts_chunk$set(fig.align = 'center', echo = TRUE)\n```\n\n```{r data, include = FALSE}\nlibrary(readr)\nlibrary(dplyr)\nlibrary(ggplot2)\n\ninvestment_annual_summary <- read_csv(\"https://assets.datacamp.com/production/repositories/5756/datasets/d0251f26117bbcf0ea96ac276555b9003f4f7372/investment_annual_summary.csv\")\ninvestment_services_projects <- read_csv(\"https://assets.datacamp.com/production/repositories/5756/datasets/bcb2e39ecbe521f4b414a21e35f7b8b5c50aec64/investment_services_projects.csv\")\n```\n\n\n## Datasets \n\n### Investment Annual Summary\nThe `investment_annual_summary` dataset provides a summary of the dollars in millions provided to each region for each fiscal year, from 2012 to 2018.\n```{r investment-annual-summary}\nggplot(investment_annual_summary, aes(x = fiscal_year, y = dollars_in_millions, color = region)) +\n geom_line() +\n labs(\n title = \"Investment Annual Summary\",\n x = \"Fiscal Year\",\n y = \"Dollars in Millions\"\n )\n```\n\n### Investment Projects in `r params$country`\nThe `investment_services_projects` dataset provides information about each investment project from 2012 to 2018. Information listed includes the project name, company name, sector, project status, and investment amounts. Projects that do not have an associated investment amount are excluded from the plot.\n\n```{r country-investment-projects}\ncountry_investment_projects <- investment_services_projects %>%\n filter(country == params$country) \n\nggplot(country_investment_projects, aes(x = date_disclosed, y = total_investment, color = status)) +\n geom_point() +\n labs(\n title = \"Investment Services Projects\",\n x = \"Date Disclosed\",\n y = \"Total IFC Investment in Dollars in Millions\"\n )\n```\n\n### Investment Projects in `r params$country` in 2018\nThe `investment_services_projects` dataset was filtered below to focus on information about each investment project from the 2018 fiscal year, and is referred to as `country_investment_projects_2018`. Projects that do not have an associated investment amount are excluded from the plot.\n```{r country-investment-projects-2018}\ncountry_investment_projects_2018 <- investment_services_projects %>%\n filter(country == params$country,\n date_disclosed >= \"2017-07-01\",\n date_disclosed <= \"2018-06-30\") \n\nggplot(country_investment_projects_2018, aes(x = date_disclosed, y = total_investment, color = status)) +\n geom_point() +\n labs(\n title = \"Investment Services Projects\",\n x = \"Date Disclosed\",\n y = \"Total IFC Investment in Dollars in Millions\"\n ) \n```\n\n\n"}