Überschriften und Abschnittsnummerierung festlegen
Nachdem du ein Inhaltsverzeichnis hinzugefügt hast, passt du nun sein Erscheinungsbild im Bericht an und bestimmst, welche Informationen es enthält. Du verwendest toc_depth, um die Tiefe der Überschriften festzulegen, die im Inhaltsverzeichnis erscheinen, und number_sections, um die Überschriften im Bericht zu nummerieren.
Diese Übung ist Teil des Kurses
Berichten mit R Markdown
Anleitung zur Übung
- Gib unterhalb des Felds
tocmittoc_deptheine Überschriftentiefe von2für das Inhaltsverzeichnis an. - Füge unterhalb des Felds
toc_depthmitnumber_sectionsnummerierte Abschnitte zum Dokument hinzu. - Passe die Überschriften im Dokument an, indem du bei jeder Überschrift ein Rautenzeichen entfernst, sodass die größte Überschrift mit einer einzelnen Raute beginnt und die Abschnittsnummerierung bei 1 startet.
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
{"investment_report.Rmd":"---\ntitle: \"Investment Report\"\noutput: \n html_document:\n toc: true\ndate: \"`r format(Sys.time(), '%d %B %Y')`\"\n---\n\n```{r setup, include = FALSE}\nknitr::opts_chunk$set(fig.align = 'center', echo = TRUE)\n```\n\n```{r data, include = FALSE}\nlibrary(readr)\nlibrary(dplyr)\nlibrary(ggplot2)\n\ninvestment_annual_summary <- read_csv(\"https://assets.datacamp.com/production/repositories/5756/datasets/d0251f26117bbcf0ea96ac276555b9003f4f7372/investment_annual_summary.csv\")\ninvestment_services_projects <- read_csv(\"https://assets.datacamp.com/production/repositories/5756/datasets/bcb2e39ecbe521f4b414a21e35f7b8b5c50aec64/investment_services_projects.csv\")\n```\n\n## Datasets \n\n### Investment Annual Summary\nThe `investment_annual_summary` dataset provides a summary of the dollars in millions provided to each region for each fiscal year, from 2012 to 2018.\n```{r investment-annual-summary}\nggplot(investment_annual_summary, aes(x = fiscal_year, y = dollars_in_millions, color = region)) +\n geom_line() +\n labs(\n title = \"Investment Annual Summary\",\n x = \"Fiscal Year\",\n y = \"Dollars in Millions\"\n )\n```\n\n### Investment Projects in Brazil\nThe `investment_services_projects` dataset provides information about each investment project from 2012 to 2018. Information listed includes the project name, company name, sector, project status, and investment amounts. Projects that do not have an associated investment amount are excluded from the plot.\n\n```{r brazil-investment-projects}\nbrazil_investment_projects <- investment_services_projects %>%\n filter(country == \"Brazil\") \n\nggplot(brazil_investment_projects, aes(x = date_disclosed, y = total_investment, color = status)) +\n geom_point() +\n labs(\n title = \"Investment Services Projects in Brazil\",\n x = \"Date Disclosed\",\n y = \"Total IFC Investment in Dollars in Millions\"\n )\n```\n\n### Investment Projects in Brazil in 2018\nThe `investment_services_projects` dataset was filtered below to focus on information about each investment project from the 2018 fiscal year, and is referred to as `brazil_investment_projects_2018`. Projects that do not have an associated investment amount are excluded from the plot.\n\n```{r brazil-investment-projects-2018}\nbrazil_investment_projects_2018 <- investment_services_projects %>%\n filter(country == \"Brazil\",\n date_disclosed >= \"2017-07-01\",\n date_disclosed <= \"2018-06-30\") \n\nggplot(brazil_investment_projects_2018, aes(x = date_disclosed, y = total_investment, color = status)) +\n geom_point() +\n labs(\n title = \"Investment Services Projects in Brazil in 2018\",\n x = \"Date Disclosed\",\n y = \"Total IFC Investment in Dollars in Millions\"\n ) \n```\n\n\n"}