LoslegenKostenlos loslegen

Alle Projekte für ein Land visualisieren

Zuvor hast du mit investment_annual_summary ein Liniendiagramm erstellt. Jetzt nutzt du die gefilterten Daten, um Streudiagramme zu erstellen, die die Informationen über die Projekte in Brasilien zusammenfassen.

Diese Übung ist Teil des Kurses

Berichten mit R Markdown

Kurs anzeigen

Anleitung zur Übung

  • Erstelle im Code-Chunk brazil-investment-projects ein Streudiagramm der Daten brazil_investment_projects.
  • Plotte das Veröffentlichungsdatum (date_disclosed) auf der x-Achse und die gesamte IFC-Investition (total_investment) auf der y-Achse.
  • Färbe den Plot nach status, sodass der Plot den Status jedes Projekts anzeigt.

Interaktive Übung

Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.

{"investment_report.Rmd":"---\ntitle: \"Investment Report\"\ndate: \"`r format(Sys.time(), '%d %B %Y')`\"\noutput: html_document\n---\n\n```{r data, include = FALSE}\nlibrary(readr)\nlibrary(dplyr)\nlibrary(ggplot2)\n\ninvestment_annual_summary <- read_csv(\"https://assets.datacamp.com/production/repositories/5756/datasets/d0251f26117bbcf0ea96ac276555b9003f4f7372/investment_annual_summary.csv\")\ninvestment_services_projects <- read_csv(\"https://assets.datacamp.com/production/repositories/5756/datasets/bcb2e39ecbe521f4b414a21e35f7b8b5c50aec64/investment_services_projects.csv\")\n```\n\n\n## Datasets \n\n### Investment Annual Summary\n\nThe `investment_annual_summary` dataset provides a summary of the dollars in millions provided to each region for each fiscal year, from 2012 to 2018.\n```{r investment-annual-summary}\nggplot(investment_annual_summary, aes(x = fiscal_year, y = dollars_in_millions, color = region)) +\n  geom_line() +\n  labs(\n    title = \"Investment Annual Summary\",\n    x = \"Fiscal Year\",\n    y = \"Dollars in Millions\"\n  )\n```\n\n### Investment Projects in Brazil\n\nThe `investment_services_projects` dataset provides information about each investment project from 2012 to 2018. Information listed includes the project name, company name, sector, project status, and investment amounts.\n```{r brazil-investment-projects}\nbrazil_investment_projects <- investment_services_projects %>%\n  filter(country == \"Brazil\") \n\nggplot(___, aes(___)) +\n  ___ +\n  labs(\n    title = \"Investment Services Projects\",\n    x = \"Date Disclosed\",\n    y = \"Total IFC Investment in Dollars in Millions\"\n  )\n```\n\n### Investment Projects in Brazil in 2018\n\n```{r brazil-investment-projects-2018}\nbrazil_investment_projects_2018 <- investment_services_projects %>%\n  filter(country == \"Brazil\",\n         date_disclosed >= \"2017-07-01\",\n         date_disclosed <= \"2018-06-30\") \n```\n\n\n"}
Code bearbeiten und ausführen