Visualizing all projects for one country and year
Now, you'll create a line plot using the data that was filtered for all projects that occurred in Brazil in the 2018 fiscal year. In the previous exercises, the labels were added for you. While creating this plot, you'll gain some experience adding your own labels that will appear when you knit the report.
Diese Übung ist Teil des Kurses
Reporting with R Markdown
Anleitung zur Übung
- In the
brazil-investment-projects-2018
code chunk, create a scatterplot of thebrazil_investment_projects_2018
data. - Add the title "Investment Services Projects in Brazil in 2018" to the plot.
- Label the x-axis "Date Disclosed" and the y-axis "Total IFC Investment in Dollars in Millions".
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
{"investment_report.Rmd":"---\ntitle: \"Investment Report\"\ndate: \"`r format(Sys.time(), '%d %B %Y')`\"\noutput: html_document\n---\n\n```{r data, include = FALSE}\nlibrary(readr)\nlibrary(dplyr)\nlibrary(ggplot2)\n\ninvestment_annual_summary <- read_csv(\"https://assets.datacamp.com/production/repositories/5756/datasets/d0251f26117bbcf0ea96ac276555b9003f4f7372/investment_annual_summary.csv\")\ninvestment_services_projects <- read_csv(\"https://assets.datacamp.com/production/repositories/5756/datasets/bcb2e39ecbe521f4b414a21e35f7b8b5c50aec64/investment_services_projects.csv\")\n```\n\n\n## Datasets \n\n### Investment Annual Summary\n\nThe `investment_annual_summary` dataset provides a summary of the dollars in millions provided to each region for each fiscal year, from 2012 to 2018.\n```{r investment-annual-summary}\nggplot(investment_annual_summary, aes(x = fiscal_year, y = dollars_in_millions, color = region)) +\n geom_line() +\n labs(\n title = \"Investment Annual Summary\",\n x = \"Fiscal Year\",\n y = \"Dollars in Millions\"\n )\n```\n\n### Investment Projects in Brazil\n\nThe `investment_services_projects` dataset provides information about each investment project from 2012 to 2018. Information listed includes the project name, company name, sector, project status, and investment amounts.\n```{r brazil-investment-projects}\nbrazil_investment_projects <- investment_services_projects %>%\n filter(country == \"Brazil\") \n\nggplot(brazil_investment_projects, aes(x = date_disclosed, y = total_investment, color = status)) +\n geom_point() +\n labs(\n title = \"Investment Services Projects in Brazil\",\n x = \"Date Disclosed\",\n y = \"Total IFC Investment in Dollars in Millions\"\n )\n```\n\n### Investment Projects in Brazil in 2018\n\n```{r brazil-investment-projects-2018}\nbrazil_investment_projects_2018 <- investment_services_projects %>%\n filter(country == \"Brazil\",\n date_disclosed >= \"2017-07-01\",\n date_disclosed <= \"2018-06-30\") \n\nggplot(___, aes(x = date_disclosed, y = total_investment, color = status)) +\n geom_point() +\n labs(\n title = ___,\n x = ___,\n y = ___\n ) \n```\n\n\n"}